Geometric Conservation Law and Finite Element Methods for 3-D Unsteady Simulations of Incompressible Flow
نویسندگان
چکیده
This paper takes a fresh look at the Geometric Conservation Law (GCL) from the perspective of Arbitrary Lagrangian Eulerian (ALE) finite element methods for solving 3-D incompressible viscous flows problems on deforming domain. GCL compliance is traditionally interpreted as a consistency criterion for applying an unsteady flow solution algorithm to simulate exactly a uniform flow on a deforming domain. We introduce an additional requirement: the time integrator must maintain its fixed mesh accuracy when applied to deforming meshes. We show how a fixed mesh unsteady FEM using high order time integrator (up to fifth order in time) can be transposed to solve problems on deforming meshes and preserve its fixed mesh high order temporal accuracy. An appropriate construction of the divergence of the mesh velocity guarantees GCL compliance while a separate construction of the mesh velocity itself allows the time-integrator to deliver its fixed mesh high order temporal accuracy on deforming domains. Analytical error analysis of problems with closed form solutions provides insight on the behavior of the time integrators. We present thorough time-step and grid refinement studies for simple problems with closed form solutions and for a manufactured solution with a non-trivial flow on a deforming mesh. In all cases studied, the proposed reconstructions of the mesh velocity and its divergence lead to optimal time accuracy on deforming grids.
منابع مشابه
On the geometric conservation law in transient flow calculations on deforming domains
This note revisits the derivation of the ALE form of the incompressible Navier-Stokes equations in order to retain insight into the nature of geometric conservation. It is shown that the flow equations can be written such that time derivatives of integrals over moving domains are avoided prior to discretisation. The geometric conservation law is introduced into the equations and the resulting f...
متن کاملNumerical Simulation and Analysis of Incompressible Newtonian Fluid Flows using FreeFem++
We present the analysis and numerical simulations of incompressible Newtonian fluids for unsteady flows in a straight pipe and in deformed pipe with concave and convex deformation of the upper wall. An approach of modeling of blood flow is considered with an unsteady Navier-Stokes problem with a pulsatile flow for which we can establish analogy with existing cardio vascular systems. We apply th...
متن کاملConservative properties of finite difference schemes for incompressible flow
1. Motivation and objectives The purpose of this research is to construct accurate finite difference schemes for incompressible unsteady flow simulations such as LES (large-eddy simulation) or DNS (direct numerical simulation). Experience has shown that kinetic energy conservation of the convective terms is required for stable incompressible unsteady flow simulations. Arakawa (1966) showed that...
متن کاملTurbulent Flow in 2-D Domains with Complex Geometry-Finite Elelment Method
Using the highly recommended numerical techniques, a finite element computer code is developed to analyse the steady incompressible, laminar and turbulent flows in 2-D domains with complex geometry. The Petrov-Galerkin finite element formulation is adopted to avoid numerical oscillations. Turbulence is modeled using the two equation k-ω model. The discretized equations are written in the form o...
متن کاملTurbulent Flow in 2-D Domains with Complex Geometry-Finite Elelment Method
Using the highly recommended numerical techniques, a finite element computer code is developed to analyse the steady incompressible, laminar and turbulent flows in 2-D domains with complex geometry. The Petrov-Galerkin finite element formulation is adopted to avoid numerical oscillations. Turbulence is modeled using the two equation k-ω model. The discretized equations are written in the form o...
متن کامل